Featured Posts (154)

Sort by

Subject:  Output Statstics Manager to find negative flows in InfoSWMM

 

Output Statstics Manager to find negative flows with these parameters:

 

1.       Pipe Features

2.       Use a Domain with your force mains

3.       Select Flow

4.       Event Dependent

5.       Total – NOT Mean or Peak to  find the negative and positive flows

6.       Large NEGATIVE Flow Threshold

7.       Large NEGATIVE Volume Threshold

8.       Zero for Interevent Time to pick up all values

9.       You will get a table that shows you the minimun flows, and a histogram of the flows

 

Image002

 

Image003

Image007

  

Read more…

Note:  The Keep and Dampen options and their effect on the four main terms of the St Venant equation. 

 

The four terms are are used in the new flow for a time step of Qnew:

 

Qnew = (Qold – dq2 + dq3 + dq4) / ( 1 + dq1)

when the force main or gravity main is full dq3 and dq4 are zero and  Qnew = (Qold – dq2) / ( 1 + dq1)

 

The dq4 term in dynamic.c uses the area upstream (a1) and area downstream (a2), the midpoint velocity, the sigma factor (a function of the link Froude number), the link length and the time step or

dq4 = Time Step * Velocity * Velocity * (a2 – a1) / Link Length * Sigma

where Sigma is a function of the Froude Number and the Keep, Dampen and Ignore Inertial Term Options.  Keep sets Sigma to 1 always and Dampen set Sigma based on the Froude number, Ignore sets Sigma to 0 all  of the time during the simulation

 

the dq3 term in dynamic.c uses the current midpoint area (a function of the midpoint depth), the sigma factor and the midpoint velocity.

 

dq3 = 2 * Velocity * ( Amid(current iteration) – Amid (last time step) * Sigma

dq1 = Time Step * RoughFactor / Rwtd^1.333 * |Velocity|

 

The weighted area (Awtd) is used in the dq2 term of the St. Venant equation:

dq2 = Time Step * Awtd * (Head Downstream – Head Upstream) / Link Length or

dq2 = Time Step * Awtd * (Head Downstream – Head Upstream) / Link Length

 

ormally, dq1 (Friction Loss / Maroon in the Graph) balances dq2 (Water Surface Slope Term or Green in the Graph) but often for links with a large difference between upstream and  downstream depths dq4 (Red in the Graph) can have a significant value.  If dq4 or dq3 are important then the depth of water to increases to pass the same flow using the Keep option over the Ignore.   If you have a link with a Froude number near or over 1.0 (Supercritical) then using Keep or Dampen  for the Options may result in depth differences.   The effect of Keep is to increase the “loss” terms in the St Venant Equation.   The effect of Dampen and Ignore is to decrease the sum of the “loss” terms in the St. Venant Solution and lower the simulated depth.

 

Read more…

Subject:   Surcharged Node and the Link Connection in SWMM 5

A surcharged node in SWMM 5 uses this point iteration equation (Figure 1):

dY/dt = dQ / The sum of the Connecting Link values of  dQ/dH

where Y is the depth in the node, dt is the time step, H is the head across the link (downstream – upstream), dQ is the net inflow into the node and dQ/dH is the derivative with respect to H of the link  St Venant equation.  If you are trying to calibrate the surcharged node depth, the main calibration variables are the time step and the link  roughness:

1.   Mannings’s N

2.   Hazen-Williams or

3.   Darcy-Weisbach

The link roughness is part of the term dq1 in the St Venant solution and the other loss terms are included in the term dq5.  You can adjust the roughness of the surcharged link  to affect the node surcharge depth.

Figure 1.  The Node Surcharge Equation is a function of the net inflow and the sum of the term dQ/dH in all connecting links. Generally, as you increase the roughness the value of dQ/dH increases and the denominator of the term dY/dt = dQ/dQdH increases.

Image002

Figure 2.  The value of dQ/dH in a link as the roughness of the link increases.

Image006

Read more…

How to Make Icons and Expand the Toolbars in infoSWMM and InfoSewer

Subject:  How to Make Icons and Expand the Toolbars in InfoSWMM and InfoSewer

You can customize the toolbars in InfoSWMM and InfoSewer by clicking on Customize and performing 4 steps: 

Step 1.  Click on Customize

Step 2.  Move the tool from the Command list to the toolbar.

Step 3.  Change the Button Image for the Default Style.

Step 4.  The Toolbar now has a new Icon for the InfoSWMM command.

 Step 1.  Click on Customize

Step 2.  Move the tool from the Command list to the toolbar.

Step 3.  Change the Button Image for the Default Style.

Step 4.  The Toolbar now has a new Icon for the InfoSWMM command.

Read more…

Subject:   How do I correct a fatal error resulting in automatic shutdown in ArcMap?

If you cannot open ArcMap, InfoSewer or InfoSWMM at all and get a fatal Esri error the problem may be the file normal.mxt

“If the startup file in ArcGIS Desktop or component applications (e.g., ArcMap, ArcGlobe, ArcScene) is corrupt, a fatal error can occur. Renaming or deleting the existing startup file will often resolve the error. Once the corrupted startup file is removed, ArcGIS will create a new startup file after the application is launched (http://kb.iu.edu/data/asuv.html).”

To remove the startup file in Windows XP for Arc GIS 10 go to the directory C:\Documents and Settings\Your Name\Application Data\ESRI\Desktop10.0\ArcMap\Templates and delete the file Normal.mxt.   You then reopen Arc Map and the normal.mxt file will be recreated and smaller.  You will have to reset the ArcMap toolbars to better control InfoSewer and InfoSWMM.   

Image002

Read more…

Subject:  How to Divide the Inflow at a Node in InfoSWMM

In SWMM 5 only the Kinematic Wave solution allows a flow divider at a node to divide the Inflow to node to two  downstream  links, but you can use the Inflow/Outflow Outlet type in InfoSWMM to divide the inflow based on a Inflow/Outflow Diversion Table (Figure 1).  For example, in InfoSWMM it is possible to have two downstream links from a Node that are Outlet types Inflow/Outflow so that the low flow goes down one link and the high flow goes down the other link (Figure 2 and Figure 3).   The low flow and the high flow  link  use different diversion tables in which the tables are constructed so that the flow is positive in one link and zero in the other to a dividing flow value and then zero and positive for the same two links after the dividing flow value ( 5 cfs in the example).

Figure 1.  Types of OUTLETS in InfoSWMM and SWMM 5

Image005

Figure 2.  Example low flow and high flow Outlet Links to divide the total  inflow at the upstream node at 5 cfs.

Image002

Figure 3.   The flow is divided into the low and high flow links at the dividing flow of 5 cfs.

Image006

Read more…

Subject:   Drawing features to show multiple attributes in InfoSWMM

 

Your network data usually has a number of different attributes that describe the features it represents (Figure 3). While you’ll commonly use one of the attributes to symbolize the

data—for example, showing one quantity in the InfoSWMM Map Display —you may sometimes want to use more than one.   One way to show multiple attributes in InfoSWMM is to copy layers and then use the Layer Properties to color, map or otherwise display the multivariable data (Figure 1).  For example, Figure 2 shows the important Subcatchment parameters of Slope, Imperviousness and Width as graduated colors, dots and a pie shape, respectively.

 

Figure 1.  Use the Symbology Tab to select the attribute you want to show and the way to show the attribute.

 

Image003

 

Figure 2.   The Subcatchment slope is shown in graduated colors, the percent impervious in scattered dots a a measels map and the Subcatchment Width is shown in a pie graph with the size of the pie a function  of the total  width.

Image004

 

Figure 3.  Physical Data Estimated from a DEM using the Subcatchment Manager in InfoSWMM.

Image002

 

 

 

Read more…

Subject:  Create Watershed Data Using InfoSWMM Subcatchment Manager

 

The Subcatchment Manager of InfoSWMM will  help calculate most of the  physical parameters associated with a Watershed or Subcatchment in SWMM 5 from a Digital Elevation Data (Step 1).  The Subcatchments slope is estimated from a slope raster (Step 2) and the Slope Calculator (Step 4)The created watershed area are calculated using the command Update DB from Map (Step 6) along with the Subcatchment Width (Step 3) and the Impervious Area (Step 5).   The physical parameters estimated from the DEM are shown in Figure 1.

 

Figure 1.  Physical Data Estimated from a DEM using the Subcatchment Manager in InfoSWMM.

Image008

 

 

Step 1.  Use the command Create Flow Stream to create a Flow Stream for the DTM or DEM that can be used later.

 

Image001

 

Step 2.   Create a Slope Raster from the DEM for later usage in the Slope Calculator.

 

Image002

 

Step 3.   Calculate the Width of the Subcatchment using one of five methods.

 

Image003

 

Step 4.   Calculate the Slope in percent from the Slope Raster created in Step 2.

 

Image004

 

Step 5.   Populate the Impervious area percentage using a Parcel shape file and the Created Subcatchments.

 

 

Image005

 

Step 6.   Use Arc Map to calculate the area of the Subcatchments using the command Update DB from Map and the following Operation Flags.

 

Image006

 

Read more…

Subject:  Create Watersheds Using InfoSWMM Subcatchment Manager 

 

The Subcatchment Manager of InfoSWMM will  help calculate most of the  physical parameters associated with a Watershed or Subcatchment in SWMM 5 from a Digital Elevation Data (Step 1).  The Subcatchments area created from a Flow Direction Raster (Step 2) and a Flow Accumulation Raster (Step 4) after filling in any Sinks in the DEM (Step 3).  The created watersheds (Step 5).   The physical parameters estimated from the DEM are shown in Figure 1.

 

Figure 1.  Physical Data Estimated from a DEM using the Subcatchment Manager in InfoSWMM.

Image009

 

 

Step 1.  Find, Create or Otherwise Locate a TIN, DEM or DTM for the project area with elevation data that you can  use with the InfoSWMM Subcatchment Manager.

 

Image003

 

Step 2.   Create a Flow Direction Raster using the Watershed Command.

 

Image002

 

Step 3.   Check to see if there are Sinks in the Elevation Data that have to be filled using the Filled Sink Command.

 

Image004

 

Step 4.   Create a Flow Accumulation Raster

 

Image005

 

Step 5.   Create the Watersheds from the Flow Direction and Flow Accumulation Rasters.

 

Image006

 

 

Read more…

Continuous Simulation Aids for InfoSWMM

Subject:   Continuous Simulation Aids for InfoSWMM

If you have a large network and especially if you are doing continuous simulation then you want to have many tools for helping you understand the network and the simulation results.  

v  In InfoSWMM and H2OMAP SWMM you can have a Base Network with many differenct Child Scenaio generations.  A Child can be either based on the Base Scenario of a different generation Child Scenario.

v  Facility Manager allows you to make inactive and active sets areas of your network, which makes simulating larger and smaller models a snap to do in InfoSWMM.   Run Manager lets you control which areas of the model  network gets save to the  binary graphics file (Figure 1).  

v  The Process Control in  Run Manager (similar to the process control in SWMM 5) allows the modeler to control  which processes are simulation to  help in her model  calibration.

Figure 1.  Scenarios, Facility Manager and Run Manger Options.

Image006

Figure 2.  Run Manager Process Controls.

Image007

Read more…

Subject:  RDII or Tri Triangular Unit Hydrograph in InfoSewer

The RDII method in InfoSewer is similar to the RDII or RTK  method in  InfoSWMM with some differences.    The RTK data for triangles 1, 2 and 3 are defined in the Unit Hydrograph but instead of individual R values, the overall R is set and the Percent R1,  R2 and R3 are defined based on the total  R.  R3 is calculated internally as 100 – R1 – R2.   Each loading manhole with RDII flow has a total  area, a hyetograph and a Unit Hydrograph.  The hyetograph has to be set at multiples of the unit hydrograph, so you can define the time or X columns with integers and then use the Block Edit command to change X to minutes by multiplying  by the Unit Hydrograph time (Figure 1).   You can use only one component if you set R1 or R2 to 100 percent or R3 to 100 percent by setting R1 and R2 to 0 percent (Figure 2).  The overall area of the Unit Hydrograph is divided amongst the loading manhole using the Subbasin Area (Figure 3).   The storm flows generated can be viewed using a Group Graph (Figure 4).

Figure 1.   Hyetograph Curve for the RDII Unit Hydrograph

Image005

Figure 2.  The Unit Hydrograph is defined for various values of R, R1,  R2, T1,  T2,  T3, K1,  K2 and  K3.

Image003

Figure 3.  The Unit Hydrograph and Hyetograph are tied to a particular loading manhole using a Subbasin Area.

Image004

Figure 4.  The Unit Hydrographs that are generated can be viewed using a Group loading Manhole Graph.  The R1, R2 and R3 have only one triangle.

Image002

Read more…

Subject:  How is the Maximum Link Flow Applied in SWMM 5?

 

The maximum flow limit for a link applies to the kinematic wave and the dynamic wave solution.   The inflow to the link  in the kinematic wave solution is limited (Figure 1) but the calculated link flow is limited in the dynamic wave solution after the link flow (Figure 2):

 

1.       Is checked using the Culvert Inlet Equations (optional)

2.      The normal flow equation is checked (internally optional depending on the Normal flow options) and

3.      The Picard iteration solution under relaxation parameter (always 0.5) is applied (Figure 3).

 

Figure 1.  Kinematic Wave Solution Limits the Inflow to  the Link Maximum limit.

Image008

Figure 2. Dynamic Wave Solution link  flow limit.

Image009

Figure 3.  The Link  flow in the dynamic wave solution has three checks at each iteration in a time step.

Image010

Read more…

Adverse Slope Convention in SWMM 5

Subject:  Adverse Slope Convention  in  SWMM 5

 

If the slope of a link  is negative and the solution  is dynamic wave then the following data will be switched in link.c in SWMM 5.  All upstream data for the  link  is switched to the downstream end of the link  and  vice versa.   The means that if the flow  is from the original upstream node to the downstream node the flow  will  be negative in the output of  SWMM 5. 

 

Negative flow in SWMM 5 means:

 

1.   The link has an adverse or negative slope,

2.   The link  has reverse flow if the link slope is positive.

 

Image002

Read more…

InfoSWMM and H2oMAP SWMM Facility Manager

The InfoSWMM Facility Manager offers the knowledgeable engineer complete control what elements are simulated in her or his model.  You can make active or inactivate elements based the type of Network Element, A Network Path, A Mouse Drawn Map Selection, The Domain, A selection set, a DB Query, a Query Set and a Special Query.  You can make the simulated network smaller or larger depending on your simulation or calibration requirements.  For example, you can have a whole basin network but model only a branch or a subset of the network if you are using the Calibrator or Designer Addons.

Read more…

SWMM5 Error Messages

Engine Error Number

Description

ERROR 101:

memory allocation error.                                                                                            

ERROR 103:

cannot solve KW equations for Link                                                                                  

ERROR 105:

cannot open ODE solver.                                                                                              

ERROR 107:

cannot compute a valid time step.                                                                                   

ERROR 108:

ambiguous outlet ID name for Subcatchment                                                                            

ERROR 109:

invalid parameter values for Aquifer                                                                                

ERROR 110:

ground elevation is below water table for Subcatchment                                                               

ERROR 111:

invalid length for Conduit                                                                                          

ERROR 112:

elevation drop exceeds length for Conduit                                                                            

ERROR 113:

invalid roughness for Conduit                                                                                       

ERROR 114:

invalid number of barrels for Conduit                                                                                

ERROR 115:

adverse slope for Conduit                                                                                           

ERROR 117:

no cross section defined for Link                                                                                    

ERROR 119:

invalid cross section for Link                                                                                      

ERROR 121:

missing or invalid pump curve assigned to Pump                                                                      

ERROR 131:

the following links form cyclic loops in the drainage system:                                                       

ERROR 133:

Node %s has more than one outlet link.                                                                              

ERROR 134:

Node %s has illegal DUMMY link connections.                                                                         

ERROR 135:

Divider %s does not have two outlet links.                                                                          

ERROR 136:

Divider %s has invalid diversion link.                                                                               

ERROR 137:

Weir Divider %s has invalid parameters.                                                                             

ERROR 138:

Node %s has initial depth greater than maximum depth.                                                                

ERROR 139:

Regulator %s is the outlet of a non-storage node.                                                                   

ERROR 141:

Outfall %s has more than 1 inlet link or an outlet link.                                                             

ERROR 143:

Regulator %s has invalid cross-section shape.                                                                       

ERROR 145:

Drainage system has no acceptable outlet nodes.                                                                      

ERROR 151:

a Unit Hydrograph in set %s has invalid time base.                                                                  

ERROR 153:

a Unit Hydrograph in set %s has invalid response ratios.                                                             

ERROR 155:

invalid sewer area for RDII at node                                                                                 

ERROR 156:

inconsistent data file name for Rain Gage                                                                            

ERROR 157:

inconsistent rainfall format for Rain Gage                                                                          

ERROR 158:

time series for Rain Gage %s is also used by another object.                                                        

ERROR 159:

recording interval greater than time series interval for Rain Gage                                                  

ERROR 161:

cyclic dependency in treatment functions at node                                                                    

ERROR 171:

Curve %s has invalid or out of sequence data.                                                                       

ERROR 173:

Time Series %s has its data out of sequence.                                                                        

ERROR 181:

invalid Snow Melt Climatology parameters.                                                                            

ERROR 182:

invalid parameters for Snow Pack                                                                                    

ERROR 183:

no type specified for LID                                                                                            

ERROR 184:

missing layer for LID                                                                                               

ERROR 185:

invalid parameter value for LID                                                                                      

ERROR 186:

invalid parameter value for LID placed in Subcatchment                                                              

ERROR 187:

LID area exceeds total area for Subcatchment                                                                         

ERROR 188:

LID capture area exceeds total impervious area for Subcatchment                                                     

ERROR 191:

simulation start date comes after ending date.                                                                       

ERROR 193:

report start date comes after ending date.                                                                          

ERROR 195:

reporting time step or duration is less than routing time step.                                                     

ERROR 200:

one or more errors in input file.                                                                                   

ERROR 201:

too many characters in input line                                                                                    

ERROR 203:

too few items                                                                                                       

ERROR 205:

invalid keyword %s                                                                                                   

ERROR 207:

duplicate ID name %s                                                                                                

ERROR 209:

undefined object %s                                                                                                 

ERROR 211:

invalid number %s                                                                                                   

ERROR 213:

invalid date/time %s                                                                                                

ERROR 217:

control rule clause out of sequence                                                                                 

ERROR 219:

data provided for unidentified transect                                                                             

ERROR 221:

transect station out of sequence                                                                                     

ERROR 223:

Transect %s has too few stations.                                                                                   

ERROR 225:

Transect %s has too many stations.                                                                                   

ERROR 227:

Transect %s has no Manning's N.                                                                                     

ERROR 229:

Transect %s has invalid overbank locations.                                                                          

ERROR 231:

Transect %s has no depth.                                                                                           

ERROR 233:

invalid treatment function expression                                                                                

ERROR 301:

files share same names.                                                                                             

ERROR 303:

cannot open input file.                                                                                              

ERROR 305:

cannot open report file.                                                                                            

ERROR 307:

cannot open binary results file.                                                                                     

ERROR 309:

error writing to binary results file.                                                                               

ERROR 311:

error reading from binary results file.                                                                             

ERROR 313:

cannot open scratch rainfall interface file.                                                                        

ERROR 315:

cannot open rainfall interface file                                                                                 

ERROR 317:

cannot open rainfall data file                                                                                       

ERROR 318:

date out of sequence in rainfall data file                                                                          

ERROR 319:

invalid format for rainfall interface file.                                                                          

ERROR 321:

no data in rainfall interface file for gage                                                                         

ERROR 323:

cannot open runoff interface file                                                                                    

ERROR 325:

incompatible data found in runoff interface file.                                                                   

ERROR 327:

attempting to read beyond end of runoff interface file.                                                              

ERROR 329:

error in reading from runoff interface file.                                                                        

ERROR 330:

hotstart interface files have same names.                                                                            

ERROR 331:

cannot open hotstart interface file                                                                                 

ERROR 333:

incompatible data found in hotstart interface file.                                                                 

ERROR 335:

error in reading from hotstart interface file.                                                                      

ERROR 336:

no climate file specified for evaporation and/or wind speed.                                                        

ERROR 337:

cannot open climate file                                                                                            

ERROR 338:

error in reading from climate file                                                                                  

ERROR 339:

attempt to read beyond end of climate file                                                                          

ERROR 341:

cannot open scratch RDII interface file.                                                                            

ERROR 343:

cannot open RDII interface file                                                                                      

ERROR 345:

invalid format for RDII interface file.                                                                             

ERROR 351:

cannot open routing interface file                                                                                   

ERROR 353:

invalid format for routing interface file                                                                           

ERROR 355:

mis-matched names in routing interface file                                                                          

ERROR 357:

inflows and outflows interface files have same name.                                                                

ERROR 361:

could not open external file used for Time Series                                                                    

ERROR 363:

invalid data in external file used for Time Series                                                                  

ERROR 401:

general system error.                                                                                                

ERROR 402:

cannot open new project while current project still open.                                                           

ERROR 403:

project not open or last run not ended.                                                                              

ERROR 405:

amount of output produced will exceed maximum file size;

either reduce Ending Date or increase Reporting Time Step. 

Read more…

Storage Volume vs Depth Equation in SWMM 5

Subject:  Storage Volume vs Depth Equation in SWMM 5

 

A storage node in SWMM 5 can have either a functional form or a tabular depth/area table.  The area functional form of a storage node is:

 

Area                A * Depth^B + C  and the Volume has the form in  node.c of the SWMM 5 of

 

Volume          A/(B+1)*Depth^(1+B) + C*Depth

 

For example if C is 25 square meters, A is 20 and the exponent B is 0.5 we get the following values for area and volume and you can also plot a Scatter Plot of Volume vs Depth in SWMM 5 (Figure 1).

 

Depth

Area

Volume

Meters

M^2

M^3

0

0.00

0.00

1

45.00

38.33

2

78.28

87.71

3

109.64

144.28

4

140.00

206.67

5

169.72

274.07

6

198.99

345.96

7

227.92

421.94

8

256.57

501.70

9

285.00

585.00

10

313.25

671.64

11

341.33

761.44

12

369.28

854.26

 

Table 1.  Area and Volume for a Storage Node in SWMM 5.

 

Image004

Figure 1.  You can use a Scatter Graph in SWMM 5 to show the relationship between Volume and Depth.

 

Read more…

Subject:  Lambda Calculus in the SWMM 5 Dynamic Wave Solution

 

SWMM 5 uses the method of Successive under-relaxation to solve the Node Continuity Equation and the Link Momentum/Continuity Equation for a time step.  The dynamic wave solution in dynwave.c will use up to 8 iterations to reach convergence before moving onto the next time step.  The differences between the link flows and node depths are typically small (in a non pumping system) and normally converge within a few iterations unless you are using too large a time step.  The number of iterations is a minimum of two with the 1st iteration NOT using the under-relaxation parameter omega. The solution method can be term successive approximation, fixed iteration or Picard Iteration, fixed-point combinatory, iterated function and Lambda CalculusIn computer science, iterated functions occur as a special case of recursive functions, which in turn anchor the study of such broad topics as lambda calculus, or narrower ones, such as the denotational semantics

 of computer programs (http://en.wikipedia.org/wiki/Iterated_function). 

 

In the SWMM 5 application of this various named iteration process there are three main concepts for starting, iterating and stopping the iteration process during one time step:

 

·         The 1st guess of the new node depth or link flow is the current link flow (Figure 3) and the new estimated node depths and link flows are used at each iteration to estimate the new time step depth or flow.  For example, in the node depth (H) equation dH/dt = dQ/A the value of dQ or the change in flow and the value of A or Area is updated at each iteration based on the last iteration’s value of all node depths and link flows.  

 

·         A bound or a bracket on each node depth or link flow iteration value is used by averaging the last iteration value with the new iteration value.  This places a boundary on how fast a node depth or link flow can change per iteration – it is always ½ of the change during the iteration (Figure 1).  

 

·         The Stopping Tolerance (Figure 2) determines how many iterations it takes to reach convergence and move out of the iteration process for this time step to the next time step.

Image005

Figure 1.  Under relaxation with an omega value of ½ is done on iterations 2 through a possible 8 in SWMM 5. This is not done for iteration 1.

Image008

Figure 2.  if the change in the Node Depth is less than the stopping tolerance in SWMM 5 the node is considered converged.  The stopping tolerance has a default value of 0.005 feet in SWMM 5.0.022. 

 

 

Image002

Figure 3.  The differences between the link flows and node depths are typically small (in a non pumping system) and normally converge within a few iterations unless you are using too large a time step.  The number of iterations is a minimum of two with the 1st iteration NOT using the under-relaxation parameter omega.

Read more…

Subject: InfoSWMM and H2OMAP SWMM Import and Export of HEC-RAS Geometry Data

InfoSWMM v11 and H2OMAP SWMM v10 have new import and export features for HEC-RAS interaction.   The echange commands are in the exchange menu (Table 1) and you can import HEC-RAS geometry files (Figure 1), edit imported Transect Data (Figure 2 and 3) and export the data back to a HEC-RAS geometry file (Figure 4 and 5 and Table 2).

 

Exchange

Import Manager

Exchange

Export Manager

Exchange

ODBC Exchange

Exchange

Import Generate File

Exchange

Import…

Exchange

(Conveyance Nodes)

Exchange

Conveyance (Links)

Exchange

(Disable Auto-Length Calculation)

Exchange

Export…

Exchange

Export Generate File

Exchange

(Conveyance Nodes)

Exchange

Conveyance (Links)

Exchange

(Disable Auto-Length Calculation)

Exchange

Convert Polyline

Exchange

Import EPA SWMM 5

Exchange

Export EPA SWMM 5

Exchange

Import HEC-RAS Data

Exchange

Export HEC-RAS Data

Exchange

Export Hotstart File

Exchange

Append Nodes

Exchange

GIS Gateway

 

Table 1.  Exchange commands in InfoSWMM and/or H2OMAP SWMM

 

 

Image004

Image005

 

 

Figure 1.   Import HEC-RAS command imports Geometry Files which will have the extension go1, go2 etc.

 

 

Image006

Figure 2.   The imported Transects can be viewed and edited in the Operations Tab  of the InfoSWMM Browser.

 

Image007

Figure 3.   The imported Transects can be used as a SWMM 5 Irregular Channel Transect.

 

Image002

 

Figure 4.   Export HEC-RAS command exports a geometry file containing the active Transects in InfoSWMM.

 

Image003

Figure 5.   Export HEC-RAS allows you to choose a directory and a name for the exported geometry file.

 

GEOM Title= MWHS-SWMM Export to HEC-RAS

 

River Reach= CHO

Type RM Length L Ch R = 1 ,5.065 ,471.716902,515.260000,471.716902

BEGIN DESCRIPTION:

River Mile 5.065

END DESCRIPTION:

#Sta/Elev= 68

       0   214.4      11   213.9      39   212.3      41   211.8     141   209.6

     174   208.0     275   205.1     293   203.9     297   201.6     299   201.3

     307   199.9     313   200.8     316   202.1     329   203.4     329   205.4

     366   208.6     413   208.5     417   208.3     429   206.2     434   205.8

     441   203.4     447   206.3     449   206.4     488   208.1     502   208.1

     506   208.1     550   207.0     559   206.1     566   205.9     566   205.9

     575   205.8     585   206.7     587   206.6     624   205.9     638   206.0

     644   205.9     651   205.8     667   206.8     681   207.3     696   207.7

     723   207.8     724   207.8     739   207.5     763   208.1     787   209.1

     816   209.3     920   210.0     970   209.8     998   209.8    1055   209.8

    1076   209.5    1079   209.6    1097   209.9    1108   210.1    1130   210.4

    1225   210.6    1358   211.1    1372   211.1    1419   211.3    1426   210.6

    1443   211.4    1472   211.5    1647   211.5    1670   211.5    1745   211.7

    1796   212.2    1868   213.4    1888   214.2

#Mann= 3 , 1 , 0

       0     0.1       0     275    0.04       0     366    0.08       0

Bank Sta=274.500000,365.500000

                               

Table 2.   The exported HEC-RAS Geometry File from InfoSWMM 

Read more…

Subject:  Advanced SWMM 5 import into InfoSWMM and H2OMAP SWMM

 

The current version of InfoSWMM and H2OMAP SWMM not only imports the latest SWMM 5 version but it has built in flexibility that allows the user to import selected data sections, model data sections or auxiliary file information such as calibration data files.  This allows you the choice of importing non specific network data that can used in the model of any city, county, shire, town or watershed.  For example,  you can import only these sections without affecting the geometry of your network:

 

1.      Calibration File Information,

2.      RTC Rules

3.      Aquifers

4.      Snowpacks

5.      Buildup for Water Quality,

6.      Washoff for Water Quality,

7.      Evaporation,

8.      Time Series,

9.       DWF,

10.        Patterns,

11.        RDII

12.        Loadings,

13.        Curves,

14.        LID Controls,

15.        LID Usage,

16.        Pollutants,

17.        Land Uses

 

Possible uses of this feature would be to have a city wide or company wide library of LID controls, RTC Rules or RDII values.

 

Image002

 

Figure 1.  Import Dialog with Import Options

 

Image003

 

Figure 2.  Only names and directories of the Calibration Files was imported 


Read more…